Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis.

نویسندگان

  • Joerg Fettke
  • Irina Malinova
  • Tanja Albrecht
  • Mahdi Hejazi
  • Martin Steup
چکیده

Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-(14)C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less (14)C into starch when unlabeled bicarbonate is supplied in addition to the (14)C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-(14)C]Glc-1-P incorporate (14)C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate (14)C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcellular localization of spermidine synthase in the protoplasts of chinese cabbage leaves.

Previous studies on the presence of spermidine synthase (EC 2.5.1.16) in the protoplasts of Chinese cabbage (Brassica pekinensis var Pak Choy) leaves had detected a small but significant fraction of the enzyme in a crude chloroplast fraction (Cohen, Balint, Sindhu 1981 Plant Physiol 68: 1150-1155). To establish whether this enzyme is truly a chloroplast component, we have isolated purified inta...

متن کامل

Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase.

The phosphorylation of amylopectin by the glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step within starch metabolism. This is indicated by the starch excess phenotype of GWD-deficient plants, such as the sex1-3 mutant of Arabidopsis (Arabidopsis thaliana). To identify starch-related enzymes that rely on glucan-bound phosphate, we studied the binding of proteins extracted from Arabid...

متن کامل

Guard Cell Chloroplasts Are Essential for Blue Light-Dependent Stomatal Opening in Arabidopsis

Blue light (BL) induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL) enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we inve...

متن کامل

Physiological rates of starch breakdown in isolated intact spinach chloroplasts.

Starch breakdown with rates above 10 muatom carbon per mg chlorophyll per hour has been monitored in spinach chloroplasts and compares favorably with the rates in whole leaves. Intact starch-loaded chloroplasts were prepared from protoplasts to avoid rupture during mechanical homogenization and rapid centrifugation. Particular attention was paid to the identification of all the products of star...

متن کامل

Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.

C3 or crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants perform nocturnal starch degradation which is linear with time. To analyse the composition of metabolites released by isolated leaf chloroplasts during starch degradation we developed a protocol for the purification of starch-containing plastids. Isolated chloroplasts from C3 or CAM-induced M. crystallinum pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 155 4  شماره 

صفحات  -

تاریخ انتشار 2011